What can the UKCA chemistry-climate model can tell us about ozone and methane?

Paul Griffiths, Ines Heimann, Nicola Warwick Alex Archibald and John Pyle

Cambridge University and NCAS Climate

Paper now published in JAMES: DOI: 10.1029/2019MS002019

Ines' PhD: A global study of tropospheric methane chemistry and emissions DOI:10.17863/CAM.56036

Atmospheric methane is an important greenhouse gas

- Methane has a large (second largest) radiative forcing, making it an important anthropogenic greenhouse gas. AR5 gives
 - CO₂: 1.82 Wm⁻² for an increase from 278 ppm (Pre-Industrial) to 391 ppm (Present-Day)
 - CH₄ : 0.48 Wm⁻² [AR5] for an increase of 722 ppb to 1803 ppb (PI-PD) (AR6 revises upwards)
 - \circ O₃ : 0.4 (± 0.2) Wm⁻² for an increase of 10 ppb? to 50 ppb (PI ozone uncertain drives RF uncertainty)
- A large Global Warming Potential 28 on a 100-year horizon (per-molecule w.r.t. CO₂)
- Strong sources 585 Tg CH₄ per year, with strong chemical sinks. Lifetime of 10 years
- Methane oxidation leads to ozone and water vapour both greenhouse gases with methane an important source of stratospheric water vapor – modifies GWP up to 31 [Prather and Holmes, 2013].

Sources	Wetlands	Fossile fuels gas and coal	Termites	Ruminants	Rice	Waste landfill	Biomass burning
Tg CH ₄ per year	177-284	85-105	2-22	87-94	33-40	67-90	32-39

Sinks	Tropospheric OH	Stratospheric loss	Tropospheric Cl	Methanotrophs
Tg CH ₄ per year	454-617	40	13-37	9-47
Lifetime*	10 years	120 years	160 years	160 years

Atmospheric chemists love methane

$$\begin{array}{rcl} CH_4 + OH + O_2 & \rightarrow & CH_3O_2 + H_2O \\ \\ CH_3O_2 & \rightarrow \rightarrow & CO + HO_2 \\ CO + OH + O_2 & \rightarrow & HO_2 + CO_2 \end{array} \text{ Via HCHO species} \end{array}$$

or even

$$\begin{array}{rccc} CH_4 + OH & \rightarrow & CO_2 + H_2O \\ CO + OH & \rightarrow & CO_2 + H_2O \end{array}$$

$$\frac{d[CH_4]}{dt} = S_{CH_4} - k_1[OH][CH_4] \qquad k_1 = 5 \times 10^{-15} \text{ cm}^3 \text{s}^{-1} \qquad \text{S} = 585 \text{ Tg CH}_4 \text{ per year}$$

$$\frac{d[CO]}{dt} = S_{CO} - k_2[OH][CO] + k_1[OH][CH_4] \qquad k_2 = 2 \times 10^{-13} \text{ cm}^3 \text{s}^{-1} \qquad \text{S} = 1370 \text{ Tg CO per year}$$

$$\frac{d[OH]}{dt} = S_{OH} - k_X[OH] - k_2[OH][CO] - k_1 [OH][CH_4] \qquad k_1 = 10^{-15} \text{ cm}^3 \text{s}^{-1} \qquad \text{S} = 1.1 \times 10^6 \text{ cm}^3 \text{s}^{-1}$$

- CO has primary sources, but also secondary (oxidation of other VOCs).
- k1 and k2 strongly temperature-dependent, k2 also pressure-dependent
- \circ Other sinks for CH₄ can be added but slower but don't significantly affect kinetics.

Atmospheric chemists love methane

$$\frac{d[CH_4]}{dt} = S_{CH_4} - k_1[OH][CH_4]$$
$$\frac{d[CO]}{dt} = S_{CO} - k_2[OH][CO] + k_1[OH][CH_4]$$
$$\frac{d[OH]}{dt} = S_{OH} - k_X[OH] - k_2[OH][CO] - k_1[OH][CH_4]$$

 $k_1 = 5 \times 10^{-15} \text{ cm}^3 \text{s}^{-1}$ S = 585 Tg CH₄ per year $k_2 = 2 \times 10^{-13} \text{ cm}^3 \text{s}^{-1}$ S = 1370 Tg CO per year $k_X = 1 \text{s}^{-1}$ S = 1.1 \times 10^6 \text{ cm}^3 \text{s}^{-1}

- Initialize the model at zero concentration.
- Use emissions of CO and CH4, with a source and sink of OH to represent tropospheric chemistry.
- The model spins up to steady state, with a time constant of approx. 10 years.
- Gives a (global mean) steady state mixing ratio of approx 1856 ppb and CO of 105 ppb.

Feedbacks in the methane system – different visualisations

Fig. 1. The dependence of X_{CH_4} , the equilibrium CH₄ abundance, upon FCO, the non-CH₄ CO source strength, and upon time, where we assumed that $FCO = 3 \times 10^{10} + 8 \times 10^{10}(1.045)^{\prime - 1976}$ cm⁻² s⁻¹; i.e., the anthropogenic production rate is presently 8×10^{10} cm⁻² s⁻¹ and is increasing at an annual rate of 4.5%.

Table 1. Solution and Eigenstates							
$ \begin{array}{ll} k1 = 5.0 \times 10^{-15} \ cm^{3} s^{-1} & s \\ k_{2} = 2.0 \times 10^{-13} \ cm^{3} s^{-1} & s \\ k_{3} [X] = 1 \ s^{-1} & s \\ & s \\ typical \ tropospheric \ values & (E = 1) \end{array} $							
Solution at steady-state (cm ⁻³): $[CH_4] = 5.714 \times 10^{13}$ [CO] = 3.571 × 10 ¹² [OH] = 5.60 × 10 ⁵							
Jacobian matrix (J_{ij}) for steady-state solution (s^{-1}) : -2.80×10 ⁻⁹ 0.0 -0.285714 +2.80×10 ⁻⁹ -1.12×10 ⁻⁷ -0.428571 -2.80×10 ⁻⁹ -1.12×10 ⁻⁷ -2.000000							
Eigenvalues (s ⁻¹): e_1 e_2 e_3 -1.769135×10 ⁻⁹ -8.863086×10 ⁻⁸ -2.000000 (1 / 18 y) (1 / 131 d) (1 / 0.5 s)							
Eigenvectors (cm ⁻³): v_1 v_2 v_3 Δ [CH ₄] +0.999 -0.182 -0.138 Δ [CO] +0.039 +0.983 -0.208 Δ [OH] -3.6×10 ⁻⁹ -5.5×10 ⁻⁸ -0.968							
Eigenvectors (% of steady-state solution):							
v_1 v_2 v_3 100.0 -1.2 0.000000 $\Delta[CH_4]/[CH_4]_{s-s}$ +63.1 100.0 0.000003 $\Delta[CO]/[CO]_{s-s}$ -36.8 -35.6 100.0 $\Delta[OH]/[OH]_{s-s}$							
Coefficients of eigenvectors for single perturbation to:							
$\begin{array}{cccccccccccccccccccccccccccccccccccc$							

Prather, 1994

Questions for this study

- How does a methane emissions scheme perform in UM vn7.3?
 - Particularly given the biases in sinks [ACCMIP vs Prather&Prinn]
- How do CH₄ and OH sources/sinks affect CH₄ concentration?
 - $_{\circ}$ How do they interact?

"Using global and tropospheric statistics, we demonstrate that the decrease in CO abundance of about 20% (at the global scale) in 12 years has a significant impact on overall CO-OH-CH4 coupled system. " [Gaubert, 2017].

- What effect do these interactions have in a CCM such as UKCA?
 - How large are these interactions?
 - $_{\circ}~$ How do they evolve in the future?
 - What is the impact on other radiatively active gases?
- Ines also used a linearised chemistry scheme to optimise emissions ask me if interested.

Methane in UKCA - comparison with observations

- Using methane emissions derived from EDGAR emissions database.
- Modelled methane concentrations
 substantially low-biased w.r.t obs. Why?
- NB latitudinal gradient looks good!
- Are emissions wrong (low-biased) ?
- Are the sinks *wrong* is the OH not correctly represented and high-biased?
 - If OH is too high, are its sinks too low?

Methane in UKCA - emissions vs OH sink

Methane sources are largest in the extra tropics, but oxidation rate is strongly temperature dependent, so loss rates peak where T, humidity and OH high. 3 sensitivity experiments – how does the bias depend on emissions

$$\begin{array}{rccc} CH_4 + OH + O_2 & \rightarrow & CH_3O_2 + H_2O \\ CH_3O_2 & \rightarrow \rightarrow & CO + HO_2 \\ CO + OH + O_2 & \rightarrow & HO_2 + CO_2 \end{array}$$

- 1. Our BASE run using methane emissions derived from EDGAR emissions database. Total emissions 540 Tg.
- 2. A second experiment (Δ CO) in which CO emissions are increased everywhere by 50%
- 3. An experiment (ΔEMS)in which we use a second, equally plausible emissions dataset involving lower emissions in NH midlatitudes and higher emissions in tropics. Total emissions 585 Tg.

Using HadGEM3-A, including UKCA close to Archibald et al. (2020), run in perpetual 'timeslice' mode, forced by prescribed SSTs and sea-ice and GHG levels appropriate to year 2000. Identical to Banerjee et al. [2014].

Sensitivity of UKCA to emissions – 3 global experiments

What are the changes that drive the improvement in agreement?

Source	Strength / Tg		∆EMS	- BASE
	BASE	ΔEMS	Tg	Percentage
Anthropogenic	322	275	-49	-15%
Biomass burning	35	25	-10	-29%
Wetlands	190	259	-69	+36%
Other biogenic	26	26	0	0
Total	548	585	+37	+7%

Summary of the year 2000 experiments

	BASE	ΔCO	ΔEMS
Tropospheric CH ₄ emissions / Tg(CH ₄) per year	548	548	585
Tropospheric CO emissions / Tg (CO) per year	1113	1660	1113
Whole Atmospheric CH ₄ burden / Tg(CH ₄)	4325	4790	4789
Tropospheric global mean CH ₄ / ppb	1590 vs obs 1780	1787	1760
N:S methane mixing ratio gradient / ppb	104 vs obs 97	105	103
Tropospheric OH / 10 ⁵ molecules cm ⁻³	12.4	11.1	12.0
Tropospheric global mean CO / ppb	77 vs obs 102	107	81
N:S CO mixing ratio gradient / ppb	39 vs obs 67	59	38
$OH + CH_4 $ flux / Tg(CH_4) yr ⁻¹	526	521	580
Tau _{OH+CH4} / years	8.2	9.2	8.6
Ozone burden / Tg	331	329	336
Feedback factor, R	1.55	-	-

Methane in 2100

What happens to tropospheric oxidising capacity in future climate?

- We chose RCP8.5 ODS, CO₂ and other emissions increased to give 8.5 Wm⁻² radiative forcing.
- RCP8.5 also features
 - $_{\circ}$ $\,$ Large increases in methane by the end of the century
 - $_{\circ}$ $\,$ NOx and CO decreasing after 2050 $\,$
- Our approach was to look at these climate drivers individually
 - $_{\circ}$ 'What is the effect of the temperature driver?'
 - \circ ΔCC climate forcings only
 - 'And emissions?'
 - ΔCC+CH4 increase anthropogenic methane emissions to RCP8.5
- Bring all forcings together at the end
 - $_{\circ}$ $\ \Delta CC+ALL$ increase (NTCF) O3Pre to RCP8.5

What happens to tropospheric oxidising capacity in future climate?

- In RCP8.5 there's a big increase in temperature throughout the troposphere by 2100.
- The warmer atmosphere can support more water vapour, so humidity increases.
- Tropospheric expansion means the upper troposphere experiences the biggest changes.

What happens to tropospheric oxidising capacity in future climate? Experiment one – physical climate change

- In RCP8.5 there's a big increase in temperature throughout the troposphere by 2100.
- The warmer atmosphere can support more water vapour, so humidity increases.
- \circ $\,$ Water vapour is the precursor of OH $\,$
- Ozone photolysis produces O1D
- 01D + H2O \rightarrow 2OH
- o OH increases (upper panels)
- o More methane oxidation
- o Less methane (lower panels)
- o Changes largest in tropical FT
- k(OH+CH4) increases as T increases)
- Methane decrease large everywhere cf Year 2000.
- Methane lifetime reduced from 9 to 6 years.

What happens to tropospheric oxidising capacity in future climate? Experiments two- physical climate + CH4 emissions changes

- Increasing CH₄ emissions to RCP8.5 levels gives
 - Large (100%) increase in CH₄
 - Large decrease in OH
- Plotting data as exp2 exp1 i.e. figure shows the effect of the CH4 increase w.r.t the climate change signal.
- o Methane lifetime increases to 10 years

What happens to tropospheric oxidising capacity in future climate? Experiments three – physical climate + all emissions changes

- Decreasing CO and NOx to RCP8.5 levels gives
 - Smaller increase in OH (CO decreased)
 - Small decreases in CH₄ (more OH)
- Plotting data as exp3 exp2 i.e. figure shows the effect of the O3PRE increase w.r.t the (climate change + CH4) signal.

What happens to tropospheric oxidising capacity in future climate? Experiments two/three – physical climate + emissions changes

- Increasing CH₄ emissions to RCP8.5 levels gives
 - \circ Large increase in CH₄
 - Large decrease in OH
- Increasing CO and NOx to RCP8.5 levels gives
 - Smaller change in OH
 - Small decreases in CH₄

	ΔCC	Δ (CC+CH ₄)	Δ(CC+EMS)
Tropospheric CH ₄ emissions / Tg(CH ₄) per year	548	1170	1170
Tropospheric CO emissions / Tg (CO) per year	1113	1113	734
Anthropogenic NOx emissions / Tg N per year	44	44	30
Whole Atmospheric CH ₄ burden / Tg(CH ₄)	3421	10336	10260
Tropospheric global mean CH ₄ / ppb	1275	3828	3746
Tropospheric OH / 10 ⁵ molecules cm ⁻³	15.7	10.5	10.6
$OH + CH_4 $ flux / Tg(CH ₄) yr ⁻¹	568	1120	1121
Tau _(OH + CH4) / years	6.0	9.2	9.2
Tropospheric O ₃ burden / Tg	350	443	427
Feedback factor, R	1.62	1.44	1.43

Methane in the UKCA chemistry-climate model - conclusions

- Every emissions dataset can probably be *tweaked* to compare well with obs when implemented in a 3D model
 - Tropical CH₄ emissions slightly low biased, boreal emissions high biased [UKCA]
 - CO emissions may be low, but secondary CO production from VOC oxidation important and under-represented
 - In future climate, warmer temperatures act to increase OH, oxidising capacity
 - Methane emissions produce a large change in oxidizing capacity
 - Suppresses OH but increases ozone

Methane in the UKCA chemistry-climate model - conclusions

- Every emissions dataset can probably be *tweaked* to compare well with obs when implemented in a 3D model
 - Tropical CH₄ emissions slightly low biased, boreal emissions high biased [UKCA]
 - CO emissions may be low, but secondary CO production from VOC oxidation important and under-represented
 - In future climate, warmer temperatures act to increase OH, oxidising capacity
 - Methane emissions produce a large change in oxidizing capacity
 - Suppresses OH but increases ozone

Methane in the UKCA chemistry-climate model - conclusions

- Every emissions dataset can probably be *tweaked* to compare well with obs when implemented in a 3D model
 - Tropical CH₄ emissions slightly low biased, boreal emissions high biased [UKCA]
 - CO emissions may be low, but secondary CO production from VOC oxidation important and under-represented
 - In future climate, warmer temperatures act to increase OH, oxidising capacity
 - Methane emissions produce a large change in oxidizing capacity
 - Suppresses OH but increases ozone

	ΔCC	$\Delta(CC+CH_4)$	Δ(CC+EMS)	ΔCO	ΔΕΜS
Tropospheric CH ₄ emissions / Tg(CH ₄) per year	548	1170	1170	548	585
Tropospheric CO emissions / Tg (CO) per year	1113	1113	734	1660	1113
Anthropogenic NOx emissions / Tg N per year	44	44	30	4790	4789
Whole Atmospheric CH ₄ burden / Tg(CH ₄)	3421	10336	10260	1787	1760
Tropospheric global mean CH ₄ / ppb	1275	3828	3746	105	103
Tropospheric OH / 10 ⁵ molecules cm ⁻³	15.7	10.5	10.6	11.1	12.0
OH + CH ₄ flux / Tg(CH ₄) yr ⁻¹	568	1120	1121	521	580
Tau _(OH + CH4) / years	6.0	9.2	9.2	9.2	8.6
Tropospheric O3 burden / Tg	350	443	427	329	336

Conclusions

- Assessing methane emissions in a chemistry-climate model poses problems of constraint
- CO is a big part of the story as CO, CH4 and OH are coupled together
- Playing slightly fast and loose with the methane emissions enables good modelmeasurement agreement
- RCP8.5 Year 2100 show large differences from present day (!)
 - Increases in OH due to temperature decrease methane lifetime by 3 years
 - Including methane emissions pushes methane lifetime back up to 9 years
 - \circ $\;$ Large increase in O3 burden due to methane increases
 - RCP8.5 small decreases in O3PRE have small effect on methane lifetime, OH.
- Methane emissions driven models allow better representation of oxidant changes on methane burden. More physically realistic.

AerChemMIP work ongoing

• Methane is a big part of the ozone RF story. Analysis of the AerChemMIP experiments that target this is underway.

- All CMIP6 UKESM1 configurations used a concentration-driven model.
- Will be interesting to see how the emissions driven model compares!

Thanks for your attention!

Acknowledge (again): Ines Heimann

Alex Archibald, John Pyle,

Zosia Staniaszek, Gerd Folberth, Fiona O'Connor

ERC and NCAS for funding

Paper now published in JAMES: DOI: 10.1029/2019MS002019

Ines' PhD: A global study of tropospheric methane chemistry and emissions DOI:10.17863/CAM.56036

CO in \triangle CC experiments

NOx in \triangle CC experiments

O3 in \triangle CC experiments

Box modelling to derive feedback factors

- \circ How do CH₄ and OH sources/sinks affect CH₄ concentration?
- How does the chemistry scheme affect feedback factors?
- How does OH source term affect feedback factors?

"Using global and tropospheric statistics, we demonstrate that the decrease in CO abundance of about 20% (at the global scale) in 12 years has a significant impact on overall CO-OH-CH4 coupled system. " [Gaubert, 2017].

Atmospheric methane has important feedbacks – example model

$$\frac{d[CH_4]}{dt} = S_{CH_4} - k_1[OH][CH_4]$$
$$\frac{d[CO]}{dt} = S_{CO} - k_2[OH][CO] + k_1[OH][CH_4]$$
$$\frac{d[OH]}{dt} = S_{OH} - k_X[OH] - k_2[OH][CO] - k_1[OH][CH_4]$$

1600 1400 1200 1000 800 600 400 200 0 2000 2025 2050 2075 2100 2125 2150 2175 Years

k ₁ = 5×10 ⁻¹⁵ cm ³ s ⁻¹	$S = 585 \text{ Tg CH}_4 \text{ per year}$
k ₂ = 2×10 ⁻¹³ cm ³ s ⁻¹	S = 1370 Tg CO per year
k _x = 1s ⁻¹	$S = 1.1 \times 10^6 \text{ cm}^3 \text{s}^{-1}$

- Initialise the model to zero
- The model spins up to steady state, with a time constant of 10 years.
- Once spun up, increase SCH4 by 5% and re-run to spin up.
- Derive a 'feedback factor' based on the increase in concentration per unit increase in emissions.
- The feedback factor governs both the final concentration and the timescale for equilibration to steady state

 $\circ \quad [CH_4(t)] = (1.05)^f \left\{ 1 - exp\left(\frac{t}{\tau \cdot f}\right) \right\}$

Atmospheric methane has important feedbacks – example model

$$\frac{d[CH_4]}{dt} = S_{CH_4} - k_1[OH][CH_4]$$
$$\frac{d[CO]}{dt} = S_{CO} - k_2[OH][CO] + k_1[OH][CH_4]$$
$$\frac{d[OH]}{dt} = S_{OH} - k_X[OH] - k_2[OH][CO] - k_1[OH][CH_4]$$

 $k_1 = 5 \times 10^{-15} \text{ cm}^3 \text{s}^{-1}$ S = 585 Tg CH₄ per year $k_2 = 2 \times 10^{-13} \text{ cm}^3 \text{s}^{-1}$ S = 1370 Tg CO per year $k_X = 1 \text{s}^{-1}$ S = 1.1 × 10⁶ cm³ \text{s}^{-1}

- Experiment one: base with above numbers
- Experiments performed to test the strength of these feedbacks in turn
- E1 turn off all chemical feedbacks
- \circ **E2** increase S_{CO} by 50
- \circ **E3** remove CO production from CH₄
- \circ **E4** increase S_{OH} by 15%

Experiment two – remove all chemical feedbacks

$$\frac{d[CH_4]}{dt} = S_{CH_4} - k_1[OH][CH_4]$$
$$\frac{d[CO]}{dt} = S_{CO} - k_2[OH][CO]$$
$$\frac{d[OH]}{dt} = S_{OH} - k_X[OH]$$

 $k_1 = 5 \times 10^{-15} \text{ cm}^3 \text{s}^{-1}$ S = 585 Tg CH₄ per year

 $k_2 = 2 \times 10^{-13} \text{ cm}^3 \text{s}^{-1}$ S = 1370 Tg CO per year

 $k_{X} = 1s^{-1}$ $S = 1.1 \times 10^{6} \text{ cm}^{3} \text{s}^{-1}$

f = 1.00

Experiment two – increase CO sources by 50%

$$\frac{d[CH_4]}{dt} = S_{CH_4} - k_1[OH][CH_4]$$

$$\frac{d[CO]}{dt} = 1.5 S_{CO} - k_2[OH][CO] + k_1[OH][CH_4]$$

$$\frac{d[OH]}{dt} = S_{OH} - k_X[OH] - k_2[OH][CO] - k_1[OH][CH_4]$$

$$k_1 = 5 \times 10^{-15} \text{ cm}^3 \text{s}^{-1}$$
S = 585 Tg CH₄ per year $k_2 = 2 \times 10^{-13} \text{ cm}^3 \text{s}^{-1}$ S = 1370 Tg CO per year $k_X = 1 \text{s}^{-1}$ S = 1.1 × 10⁶ cm³ \text{s}^{-1}

f = 1.66

Experiment three– decrease the CO production from $\ensuremath{\mathsf{CH}}_4$ oxidation

$\frac{d[CH_4]}{dt} = S_{CH_4} - k_1[OH][CH_4]$		k ₁ = 5×10 ⁻¹⁵ cm ³ s ⁻¹	S = 585 Tg CH_4 per year
$\frac{d[CO]}{dt} = S_{CO} - k_2[OH][CO]$	$+ k_1[OH][CH_4]$	k ₂ = 2×10 ⁻¹³ cm ³ s ⁻¹	S = 1370 Tg CO per year
$\frac{d[OH]}{dt} = S_{OH} - k_X[OH] - k_2[OH] $	$[CO] - k_1 [OH] [CH_4]$	$k_{X} = 1s^{-1}$	S = 1.1×10 ⁶ cm ³ s ⁻¹

Simulation	S _{CH4}	S _{CO}	S _{OH}	Feedbacks	$ au_{CH_4}$	f
	Tg(CH₄) yr⁻¹	Tg(CO) yr ⁻¹	cm ⁻³ s ⁻¹		years	
Base	540	1370	$1.15 imes10^6$	Full	9.93	1.5
No feedbacks	540	1370	$1.15 imes 10^{6}$	None	5.42	1
Inc 1º CO ems	540	2055	$1.15 imes10^6$	Full	11.57	1.64
No 2º CO	540	1370	$1.15 imes10^6$	No 2º CO	7.95	1.2
Inc S _{OH}	540	1370	$1.44 imes10^{6}$	Full	7.32	1.36

Experiment four – increase S_{OH} by 25%

$$\frac{d[CH_4]}{dt} = S_{CH_4} - k_1[OH][CH_4] \qquad k_1 = 5 \times 10^{-15} \text{ cm}^3 \text{s}^{-1} \qquad \text{S} = 585 \text{ Tg CH}_4 \text{ per year}$$

$$\frac{d[CO]}{dt} = S_{CO} - k_2[OH][CO] + k_1[OH][CH_4] \qquad k_2 = 2 \times 10^{-13} \text{ cm}^3 \text{s}^{-1} \qquad \text{S} = 1370 \text{ Tg CO per year}$$

$$\frac{d[OH]}{dt} = 1.25 S_{OH} - k_X[OH] - k_2[OH][CO] - k_1[OH][CH_4] \qquad k_X = 1 \text{s}^{-1} \qquad \text{S} = 1.4 \times 10^6 \text{ cm}^3 \text{s}^{-1}$$

Simulation	S _{CH4}	S_{CO}	S _{OH}	Feedbacks	$ au_{CH_4}$	f
	Tg(CH₄) yr⁻¹	Ig(CO) yr-1	CM-3 S-1		years	
Base	540	1370	$1.15 imes10^6$	Full	9.93	1.5
No feedbacks	540	1370	$1.15 imes 10^{6}$	None	5.42	1
Inc 1º CO ems	540	2055	$1.15 imes 10^{6}$	Full	11.57	1.64
No 2º CO	540	1370	$1.15 imes 10^{6}$	No 2º CO	7.95	1.2
Inc S _{OH}	540	1370	$1.44 imes 10^{6}$	Full	7.32	1.36

$$f = 1.36$$

Box modelling to determine feedback factors

- CH₄-CO-OH system is strongly coupled. Changes to CH₄ source produces changes in CO and OH
- CO production from CH₄ oxidation is coupled via OH to CH₄ concentration and lifetime
- Increasing CO emissions decreases both CH₄ and OH, changes feedback
- Increasing OH source also modifies CH₄ and leads to a decrease in CH4 per unit increase in CH4 emissions (ie decreased sensitivity, lower feedback)
- \circ Both CO and OH sources modify the lifetime of CH₄ and hence its GWP

troposphere!

NB Year 2000 conditions/OH/temp