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Talk outline

* Ozone in the troposphere

* |Is formed from Volatile Organic Compounds (VOC) and nitrogen oxide
emissions

* Is a non-linear chemical system: high NOx causes a decrease in ozone
production

* Ozone in the CMIP6 era
* Natural emissions - LNOx and VOC
* Methane and oxidants
* The role of the stratosphere

* Outlook
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Tropospheric Ozone in CMIP6
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Ozone iIn CCMs — developing complexity
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How does tropospheric ozone evolve in CMIP67?

e How do emissions changes influence climate (and vice versa)? 80
e Multi model assessments provide us with an estimate of uncertainty.
e CMIPG6 featured coupled atmosphere-ocean models with online, whole-

atmosphere chemistry.

¢ Transient experiments (AR5 and ACCMIP relied mostly on timeslice

. B Model Meas
experiments) >0k Jungfraujoch <> 4 i
I Zugspitze A A
. . Sonnblick |
e Whole atmosphere models - interactive stratosphere, captures the effec =
. . O | 1 | ! | ! | ! | ) ) |
of stratospheric ozone depletion and recovery 1950 1960 1970 1980 1990 2000 2010

e Earth System models - online BVOC and NOx, vegetation sinks for ozone  Figure 1. Seasonally averaged springtime (March, April, and May)

O3 concentrations at alpine sites in Europe. Closed and open

o | . | . d | di symbols give measurements and GFDL CCM results, respectively.
nteractive aerosol formation - secon ary aerosolis responding to The solid lines give quadratic fits to respective results. The vertical

dashed line indicates the year 2000 reference.
changes in oxidants
e ARG6 deadline - submission by December 31st 2019; acceptance by

January 31st 2020 - not all models available!!

Models with online whole-atmosphere chemistry featured in CMIP6 with data on BADC as of 2021-12-04
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How does tropospheric ozone evolve in CMIP6? Comparison with obs

Surface Ozone (1950-2014)
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e CMIP6 featured coupled atmosphere-ocean models with online, whole-atmosphere chemistry.

e Good agreement between models and observations for the remote sites studied here.

e Also found nice agreement between in-situ ozone sonde measurements.

e Assessment using EO products more of a challenge - tropopause definition?

e Consistent model biases in simulating the seasonality of free-tropospheric ozone in equatorial
America, Japan and northern high latitudes and near-surface ozone over northern and north-

eastern Europe.



How does UKESM1 tropospheric ozone evolve in CMIP67?

550
—— CESM2-WACCM  —— TOST

500 GFDL-ESM4 = MMM - Historical
= MRI-ESM2-0 e MMM - SSP370 |
c 4501 —— UKESM1 —— TOAR VLt
£ —— GISS-E21-G & ACCMIP |
0 b\
o 4001 i
C
Q
o 350-
O
o)
S 300-
(/)]
(@)
o
= 250 1

200 -

1850 1900 1950 2000 2050 2100

Year

«  CMIP Historical and ScenarioMIP SSP3-70 experiments, for which suitable diagnostic output was available.
«  Picture has changed little since CMIP5/CCMI, MM range is also similar.
« Ozone burden increased by about 40% from 1850 levels of 240 Tg (MMM) with steepest rate of increase around 1960.

« In SSP3-70, the rate of growth of the burden declines further, as NOx emissions start to fall along this pathway after
2050.



What drives tropospheric ozone in CMIP67?
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What drives tropospheric ozone budget in CMIP6?
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Database of of tropospheric ozone burden changes
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e Initial results (dataset is rather incomplete)
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Conclusions 1/4 - Trop O3 in CMIP6

* CMIP6 historical experiments performed well against observations for both
trends and absolute amounts

* CMIP6 exercise was limited by data availability - hard to define outliers.
* Picture changed little from CMIP5

* Online model components - LNOX, BVOC emissions - drive model
differences in the P1/1850.

* Models with higher PI BVOC have higher ozone, lower PI-PD changes
* Evaluation of processes becomes more critical for ESMs
* Future ozone depends on the SSP - co-benefits of SSP126/SSP245 seen

* Evaluation still rather limited by the CMIP6 timeline - most centres now
moved on to CCMI12022



The role of methane and oxidants
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Methane is important to climate forcing

o Methane has a large (second largest) radiative forcing, making it an important anthropogenic
greenhouse gas

o CO,: 1.82 Wm-2 for an increase from 278 ppm (Pre-Industrial) to 391 ppm (Present-
Day)

o CH, : 0.48 Wm-2 [AR5] for an increase of 722 ppb to 1803 ppb (PI-PD)

o O;:0.4(£0.21!1)Wm-2for an increase of 10 ppb? to 50 ppb (PI ozone uncertain

o A large Global Warming Potential — 28 on a 100-year horizon (per-molecule w.r.t. CO,)
o Strong sources - 585 Tg CH, per year, with strong chemical sinks. Lifetime of 10 years

o Methane oxidation leads to ozone and water vapour — both greenhouse gases - with methane

an important source of stratospheric water vapor — modifies GWP up to 31 [Prather and
Holmes, 2013].

Wetlands Fossile fuels Termites Ruminants Waste Biomass

gas and coal ENelill burning

Tg CH, per year 177-284 85-105 2-22 87-94 33-40 67-90 32-39

Tropospheric OH Stratospheric loss Tropospheric Cl Methanotrophs
Tg CH, per year 454-617 40 13-37 9-47

Lifetime* 10 years 120 years 160 years 160 years




Methane is important to tropospheric ozone
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Climate change is important to methane - sinks
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o In RCP8.5 there's a big increase in temperature
throughout the troposphere by 2100.

© The warmer atmosphere can support more water
vapour, so humidity increases.

O Tropospheric expansion means the upper
troposphere experiences the biggest changes.
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What happens to tropospheric oxidising capacity in future climate?

O OH — warmer, wetter
atmosphere so OH
Increases

o Changes largest in tropical
FT

© More OH means less CH4
(and k(OH+CH4) increases

as T increases)

o Methane decrease large
everywhere cf Year 2000.

O Methane lifetime reduced
from 9 to 6 years.

o O1D+H2O0 drives increase,

contributions from
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ACC with respect to year 2000
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What happens to tropospheric oxidising capacity in future climate?

o Increasing CH, emissions
to RCP8.5 levels gives

o Large increase in CH,

O Large decrease in OH

o Increasing CO and NOx to

RCP8.5 levels gives

o Smaller change in OH

o Small decreases in CH,
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Conclusions 2/4 - CH4 in future climate

* AerChemMIP histSST experiments provide idealised experiments

* Can inter-compare model responses to same idealised forcing changes

* ODS depletion caused a decrease in tropospheric ozone

* 1850-2015 increase in methane levels caused an ~40 Tg increase in O3 burden

* Model sensitivity to this change is different: 40% to 80% (!)

* Climate change leads to higher temp and humidity

* Increased OH production higher levels of OH - shorter methane lifetime,
reduced GWP.

* Increased methane offsets this - OH levels suppressed by methane

* What are the co-benefits to mitigating methane emissions?
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Coupled atmosphere-ocean studies of
the role of methane in future climate
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Methane emissions in a fully coupled atmosphere-ocean model

o What are the risks of unconstrained future methane emissions?
o For an upper bound, set anthropogenic emissions to net-zero - "“NZAME" scenario

o Comparison with SSP3-7.0 and SSP1-2.6
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o Comparison with SSP3-7.0 and SSP1-2.6 allows them to function as a counterfactual
o What are the risks of methane emissions?

o What are the benefits of constraining future methane emissions?

Figures by Zosia Staniaszek




The role of future anthropogenic methane emissions in air quality and climate

© What are the impacts of lower methane emissions on OH and methane lifetime?

o OH increases significantly - warmer climate, wetter, more OH production, increase of 30%

o Methane lifetime declines rapidly
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o Comparison with SSP3-7.0 and SSP1-2.6 allows them to function as a counterfactual

o What are the risks of methane emissions?

o What are the benefits of constraining future methane emissions?

Figures by Zosia Staniaszek




The role of future anthropogenic methane emissions in air quality and climate

© What are the impacts of lower methane emissions on OH and methane lifetime?
O CH4 is an important O3 precursor - decreased CH4 — decreased O3

o Decline across the globe, strong regional variations
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o Weighting the ozone field by human exposure shows ~10% decline

O Projected decrease in AQ-related mortality of the order of 500k per year

Figures by Zosia Staniaszek




The role of future anthropogenic methane emissions in air quality and climate

© What are the impacts of lower methane emissions on global surface temperature

o Decreased radiative forcing — AT =0.5K

o Decline across the globe, strong regional variations, Arctic amplification
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Conclusions 2/4- CH4 in future climate

* Net Zero Anthropogenic Methane Emissions (‘(NZAME') experiment shows
that the maximum feasible (...) reduction in emissions would

* Prevent approx. 0.5°C of global surface temperature rise

* Reduce tropospheric ozone levels (any improvement in WHO 8hr levels?)
with benefits to O3 RF.

| eads to more OH - shorter methane lifetime, reduced GWP.

climate and
atmospheric science

npj

www.nature.com/npjclimatsci

ARTICLE W) Check for updates
The role of future anthropogenic methane emissions 1n air

quality and climate

Zosia Staniaszek ('™, Paul T. Griffiths ', Gerd A. Folberth?, Fiona M. O’Connor @7, N. Luke Abraham'? and
Alexander T. Archibald'2?*




The role of oxidant in radiative forcing -
replacing CH4 with H2 as a fuel source
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Climate effects of oxidant changes - what is the effect of H2 fugitive emissions?

H2 increment vs ERF

e Experiments with varying H2 concentration 06 @ tsmuuz
in the atmosphere. & oo .

&~ TS2014_2000H2_O3Pre_1961CH4
0.4 :: TS2014_O3Pre_1652CH4

TS2014_1000H2_O3Pre_1756CH4

e The radiative forcing increases with
increasing H2 concentration, and is positive
= a warming. Maybe a plateau?

ERF / Wm™2

0.2
e For the highest leak rates (an effective 00 +
tripling of the global atmospheric H2
source) ERF = 0.15 +0.08 Wm-2 which is 0.2
approx 5% of the warming effect of CO2

-0.4
e Increasing H2 levels see increases in 0 250 500 750 1000 1250 1500 1750
methane lifetime and in ozone burden - can AH2 I pbb
expect positive GG forcing.
* Increasing H2 levels leads to decreased OH Experiment H2 LBC OH TAU CH4 Bu?g’en
Al - 106cm-3
e Potential impacts on stratospheric ozone. Ppb e T9
Base 500 1.22 8.48 348.6
e How to attribute the RF increase? 152014 _750H2 750 1.20 8.67 347.3
TS2014_1000H2 1000 1.18 8.83 349.7
TS2014_2000H2 = 2000 1.11 9.46 353.5




Breaking ERF down into clear-sky and cloud effects

e (Can break the change in radiative flux at the top of the

atmosphere down further. Focusing here on the 2000 ppb H2
case.

e The change in the greenhouse gas forcing, a.k.a. the Clear
Sky (cloud-free) forcing

e ERF=0.103 Wm-2

e Presumably from the small increase in tropospheric

ozone (a greenhouse gas)

e The change in the radiative properties of the clouds (global CRE SW = 0.068 * 0.040 Wm~*

o e . - Xy

averaged effects)
e ACRE =0.036 Wm-
e Which can be broken down further
e Shortwave ACRE = 0.068 Wm-2

e Longwave ACRE =-0.032 Wm-2

e j.e. the clear sky forcing is of the same order as the cloud
radiative effect



Cloud radiative properties respond to aerosol changes

e Aerosol (CCN) controlled by atmospheric oxidation FIRST INDIRECT EFFECT
of gases like SO2, biogenic emissions, NOXx. o0 \\0&0
¥ &°
e Clouds form on the aerosol (CCN) present in the L O QZﬁi?ciTﬁffuaﬂf W
atmosphere G TS SRR S e e r e
\JJ JJ ? A JJJLJ)) YJ ° J’JJ‘:"J - JJJJJE_:J))
e The cloud properties are sensitive to the number of Fawer lafgerdreps more smaller drops

aerosols

SECOND INDIRECT EFFECT
5

+& macrophysically

different clouds

e more aerosol - more cloud droplets

e More droplets means

e a brighter cloud

* a longer cloud lifetime

more efficient precipitation less efficient pr‘e‘cipitation

e Leading to negative forcing (increased energy at =>more LWC depletion =>less LWC depletion
the top of the atmosphere) and less energy =>|ess cloud cover/longevity =>more cloud cover/longevity

reaching the surface

National Centre for
Atmospheric Science
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ERF - the coupling of gas phase oxidant to aerosol levels and cloud properties

120
100
80
60
40

e The additional H2 has caused a decrease in cloud
droplet number concentration (CDNC). Seen here
as a decrease in cloud droplet number with
respect to our low H2 base case.

e \We can associate this decrease with the lower

levels of the OH free radical oxidant in the region
where aerosol is formed. There are fewer aerosol
particles as a result.

e The effect of elevated H2 is to suppress OH, and
this is having knock-on effects on aerosol and on

other components (e.g. CH4 and O3).

1.0
FIRST INDIRECT EFFECT
0 P 0.5
N\ P
3 e
<" macrophysically <& L 0.0
identical clouds
)
QJJJJ JJJ JJJ ; Jj_f)) -0.5
-
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Conclusions 3/4 - oxidant and RF

* Ozone is itself a greenhouse gas - approx. 0.3 Wm-2 of forcing
* Oxidant is also important - couples e.g. CO, NOx emissions into ozone RF

* Secondary aerosol is also important, both direct (scattering/absorption) and
indirect (cloud albedo/lifetime) depend on oxidant levels.

* Emissions of H2 produce two effects

* Increase levels of ozone via HO2+NO — NO2 — — O3

* Changes aerosol size and number distribution, e.g sulfate aerosol

* More H2 — less OH — less aerosol nucleation — decreased cloud albedo
* Both of these function as a warming

* Impact depends on ‘fugitive’ emissions - i.e. leaks prior to use.

* High leakage rates can have negative consequences which may offset lower
CH4 and CO2 emissions (But the debate goes on).
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The role of the stratosphere on
tropospheric ozone
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Multimodel ozone tendency - TOAR Budget
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Tropospheric ozone budget in CCMs - large, opposing terms
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Research Letter (3 Open Access @ @

On the Changing Role of the Stratosphere on the Tropospheric
Ozone Budget: 1979-2010

P. T. Griffiths %4, J. Keeble, Y. M. Shin, N. L. Abraham, A. T. Archibald, J. A. Pyle




Inferred STE in CMIP6 models varies widely

* For a closed Ozone budget, in-situ production and downward transport from the stratosphere are
balanced by in-situ destruction and chemical loss, ie P+S=D+L

* From which Sinf = Deposition - (Production - Loss) = 1000 Tg/ yr - 500 Tg/ yr = 500 Tg/ yr
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TOAR-Il ROSTEES project

* James Keeble and | are now leading a IGAC TOAR-II endorsed Surfacglfr;raaggizf;eric O3

project “The role of the stratosphere in the Earth system”

* Review the role of stratospheric ozone recovery in controlling

future ozone levels, due 2024.

* Improved estimates of strat-trop transport of ozone in

chemistry-climate models using CCMI12022 data.

* For more stratospheric ozone work see Pyle et al. 2022

Article | Published: 24 August 2022

Integrated ozone depletion as a metric for ozone
recovery

John A. Pyle &, James Keeble &, Nathan Luke Abraham, Martyn P. Chipperfield & Paul T. Griffiths

Nature 608, 719-723 (2022) | Cite this article

1718 Accesses | 157 Altmetric | Metrics

[=1




Conclusions 4/4 - the role of the stratosphere

* Ozone is produced and destroyed in large amounts in the troposphere,
these reactions buffer each other [Wild & Palmer 2008]

* Deposition at the surface and downward transport from the stratosphere
close the budget

* Stratospheric ozone depletion produced a significant change in the
tropospheric ozone budget and oxidant [Murray et al. 2022]

* Stratospheric ozone recovery will change the budget again -
* Less photolysis as UV levels decrease [e.g. Zhang et al. 2014]

* Increased ozone as stratospheric ozone recovers and downward transport

Increases - particularly in SH where STE has largely shut down [Ruiz &
Prather 2022].

* Increased Brewer-Dobson circulation? [Zanis et al., 2021]
* Impacts on air quality are important

* EPA routinely considers stratospheric intrusions in its assessments



Summary - tropospheric ozone in CMIP6

* Ozone is buffered - produced and destroyed in large amounts in the
troposphere and these respond similarly to emissions changes.

* Climate change drives significant changes in chemistry
* Assessment is a challenge - O3 and STE best constraints

* Increasing complexity of ESMs makes assessment harder and more
important to understanding multi-model differences - CMIP77?

* Fewer models taking part - need a strategy to increase model participation
and e.g. CTM involvement for greater process-level diversity

* Understanding model diversity requires a good quantification of
* Stratospheric ozone
* Methane

* Oxidant-aerosol coupling



Thank you




Table 1. Major global tropospheric sources and sinks of Hy (Tg Hs yr~!) from various authors

Novelli etal. = Hauglustaine and  Sandersonetal. = Rheecetal.  Priceetal.  Xiao et al.
(1999) Ehhalt (2002) (2003) (2006a) (2007) (2007) This work

Fossil fuel 15+ 10 16 20.0 15+6 18.3 15+ 10 11+4
Biomass burning 16 £5 13 20.0 16 £3 10.1 13+£3 1I5+6
Biofuel 4.4
N, fixation, ocean 3+£2 5 4.0 6+5 6.0 613
N, fixation, land 3+ 1 5 4.0 6+5 0 342
Photochemical production

from methane 26 £9 15.2 24.5 238

from VOC 14 £7 15.0 9.8 18 £7

total 40 31 30.2 64 + 12 34.3 77 + 10 41 + 11
Sources total 77 £ 16 70 78.2 107 £ 15 73 105 + 10 76 £+ 14
Oxidation by OH 19£5 15 17.1 19+3 18 18 £3 19£5
Soil uptake 56 + 41 55 58.3 88 + 11 55+83 85+5 60“38
Sinks total 75 £ 41 70 75.4 107 + 11 73 105° 79130
Tropospheric Burden, Tg H, 155 + 10 136 172° 150¢ 141 149 +23  155¢ + 10
Tropospheric Lifetime, yr 2.1 1.9 2.2b 1.4 1.9 1.4 2.0

aIncludes export to stratosphere of 1.9 Tg Hy yr—1.
®Model domain reached 100 hPa; thus the burden includes about 1/2 of the stratosphere. Reduced to a troposphere holding 0.82 of the total air mass

the burden would be 157 Tg H; and the tropospheric lifetime 2.0 yr.
¢Calculated from sources and lifetime.
dFrom Novelli et al. (1999).
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Effective radiative forcing - definitions
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Calculation Methodology

Online or offline pair of
radiative transfer
calculations within one
simulation
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two offline radiative
transfer calculations
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and tropospheric
conditions allowing
stratospheric
temperature to adjust
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AF = AAT

e Calculation of ERF (Wm-2) as the change in energy flux at the top of the atmosphere following a perturbation

(natural or anthropogenic).

e ERF includes all the tropospheric and land-surface adjustments - all the responses on a short timescale that

occur as a result of the forcing agent, distinct from the slow feedbacks that arise due to temperature

perturbations.



Chemical effects of enhanced H2 levels

H; 500 ppb
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Figure by James Keeble




Model components of Earth System
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Earth system modelling within QUEST. Based on a diagram by M. Joshi



Model components of Earth System
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Model components of Earth System

(- ™
Atmospheric Chemistry & Aerosols
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Note: map shows CCN at 0.2% supersaturations.
Coloured circles show observations at range of supersaturations

Our chemistry module sits inside the UK
Met Office Unified Model (UM) and in
HadGEM/HadES models

See Wikipedia (search ‘Unified Model’)

Accurate coupling between aerosols and
chemistry. Aim to capture feedbacks,

e.g. SO2 oxidation —sulfate aeroos| —
photolysis = OH — sulphate oxidation

Radiation also included for
photochemistry

GLOMAP-MODE predicts aerosol [Mann,
2010]



Methane in UKCA - emissions vs OH sink
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Methane sources are largest in the extra
tropics, but oxidation rate is strongly
temperature dependent, so peaks where T,
humidity and OH high.




Methane in UKCA - comparison with observations

O

O

O

O

Using methane emissions derived from EDGAR
emissions database.

Methane concentrations substantially low-biased
Why?

NB latitudinal gradient looks good!
Are emissions wrong (low-biased) ?

Are the sinks wrong — is the OH not correctly
represented and high-biased?

o If OH is too high, are its sinks too low?

] A ME S Journal of Advances in
Modeling Earth Systems’
Research Article & OpenAccess () () &

Methane Emissions in a Chemistry-Climate Model:
Feedbacks and Climate Response

I. Heimann, P. T. Griffiths 54, N. ]. Warwick, N. L. Abraham, A. T. Archibald, J. A. Pyle
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3 sensitivity experiments

1. Our BASE run using methane emissions derived from EDGAR emissions database.
2. Asecond experiment in which CO emissions are increased everywhere by 50%

3. An experiment in which we use a different emissions dataset with lower emissions in NH
midlatitudes higher emissions in tropics.
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Sensitivity of UKCA to emissions - 3 global experiments

BASE emissions - EDGAR
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